An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF.
نویسندگان
چکیده
Most of the resting-state functional magnetic resonance imaging (fMRI) studies demonstrated the correlations between spatially distinct brain areas from the perspective of functional connectivity or functional integration. The functional connectivity approaches do not directly provide information of the amplitude of brain activity of each brain region within a network. Alternatively, an index named amplitude of low-frequency fluctuation (ALFF) of the resting-state fMRI signal has been suggested to reflect the intensity of regional spontaneous brain activity. However, it has been indicated that the ALFF is also sensitive to the physiological noise. The current study proposed a fractional ALFF (fALFF) approach, i.e., the ratio of power spectrum of low-frequency (0.01-0.08 Hz) to that of the entire frequency range and this approach was tested in two groups of resting-state fMRI data. The results showed that the brain areas within the default mode network including posterior cingulate cortex, precuneus, medial prefrontal cortex and bilateral inferior parietal lobule had significantly higher fALFF than the other brain areas. This pattern was consistent with previous neuroimaging results. The non-specific signal components in the cistern areas in resting-state fMRI were significantly suppressed, indicating that the fALFF approach improved the sensitivity and specificity in detecting spontaneous brain activities. Its mechanism and sensitivity to abnormal brain activity should be evaluated in the future studies.
منابع مشابه
Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملطبقهبندی بیماری پارکینسون بر مبنای شاخصهای درون-ناحیهای و بین-ناحیهای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت
Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملThe Influence of the Amplitude of Low-Frequency Fluctuations on Resting-State Functional Connectivity
Studies of brain functional connectivity have provided a better understanding of organization and integration of large-scale brain networks. Functional connectivity using resting-state functional magnetic resonance imaging (fMRI) is typically based upon the correlations of the low-frequency fluctuation of fMRI signals. Reproducible spatial maps in the brain have also been observed using the amp...
متن کاملBold Alterations in Schizophrenia: Spectral Changes in Resting-state Fmri Signal
PURPOSE Schizophrenia is a mental illness with cognitive impairments, which could be due to the abnormal neural oscillations in the brain[1]. It is believed that the neural oscillations reflect multiple physiological mechanisms in the brain networks, especially prominent in the low-frequency oscillations (LFO) [2]. Therefore, the abnormal LFO distributions may reflect the impaired cognitive fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 172 1 شماره
صفحات -
تاریخ انتشار 2008